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Inter-technology Relationship Networks: Arranging 

Technologies through Text Mining  
 

Abstract: 

Ongoing advances in digital technologies – which enable new products, services, and business models – 

have fundamentally affected business and society through several waves of digitalization. When analyzing 

digital technologies, a dynamic system or an ecosystem model that represents interrelated technologies is 

beneficial owing to the systemic character of digital technologies. Using an assembly-based process model 

for situational method engineering, and following the design science research paradigm, we develop an 

analytical method to generate technology-related network data that retraces elapsed patterns of 

technological change. We consider the technological distances that characterize technologies’ proximities 

and dependencies. We use established text mining techniques and draw from technology innovation 

research as justificatory knowledge. The proposed method processes textual data from different 

information sources into an analyzable and readable inter-technology relationship network. To evaluate 

the method, we use exemplary digital technologies from the big data analytics domain as an application 

scenario. 

Keywords:  

Text Mining; Network; Tech Mining; Patent Mining; Method Construction 

Highlights:  

 A text mining-based method arranges technological relationships in a dynamic network  

 Similarities between technology-related corpora quantifies technologies’ relatedness 

 Separating text processing pipelines allows one to incorporate different textual information 

sources jointly 

 The average relatedness of technologies within the big data analytics landscape increased between 

2007 and 2017.  
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1. Introduction 

Evaluating new technologies’ impacts on existing technology landscapes is a relevant issue for both 

researchers and practitioners. Ongoing advances in digital technologies – which enable new products, 

services, and business models – have fundamentally affected business and society through several waves 

of digitalization (Bharadwaj et al. 2013; Legner et al. 2017). Emerging technologies now include 

blockchain, deep reinforcement learning, 5th generation mobile networks, and virtual assistants (Gartner 

2017). Although it is hard to forecast technological advances and trends (Adomavicius et al. 2007; Daim et 

al. 2006), companies must decide which of the many emerging technologies are worth adopting, 

developing, or examining. A further complicating factor is that historical cases indicate that invention 

processes do not proceed in a uniform way (Arthur 2007). 

Commonly used information sources that provide insights into the evolution of technologies include 

scientific publications and patent documents (Engelsman and Van Raan 1994) as well as academic 

proposals, business news, and social media (Zhang et al. 2016). Besides bibliometric data (e.g., authors, 

citations, keywords), much of the information is only available in (unstructured) text form. The availability 

of a large corpus of written resources, often readily accessible via the internet, is both a blessing and a curse. 

While the presence of a large corpus is desirable, manually reading and interpreting a whole corpus is 

extremely time-consuming as well as complex, and thus often exceeds human information processing 

capacities (Debortoli et al. 2016; Fan et al. 2006; Hao et al. 2014; Tseng et al. 2007). Nonetheless, it is 

crucial to utilize an extensive variety of written resources, since it allows one to overcome information silos 

and thus to develop a – valuable – systematic understanding. Among other approaches, text mining is a 

promising approach to overcome these limitations. It offers new opportunities for qualitative and 

quantitative research in the IS domain (Debortoli et al. 2016). Text mining, which originated as knowledge 

discovery in textual databases (Feldman et al. 1995), generally seeks to automatically extract unknown 

information from textual data (Fan et al. 2006; Gandomi and Haider 2015; Hearst 1999). Michel et al. 

(2011), for instance, demonstrate this methodological potential by automatically analyzing word 
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frequencies in more than five million books so as to observe cultural trends. Among others, they show that 

the cultural adoption of technology has accelerated since the 19th century. In technology innovation 

research, different research streams share the approach to extract value-adding information from 

technology-related documents using text mining (Madani and Weber 2016). Since patent documents are a 

valuable source of technical knowledge (Gupta and Pangannaya 2000; Lee et al. 2009b), there are many 

approaches, often subordinated to patent mining or patent analysis (Nakamura et al. 2015). Without limiting 

itself to patent documents, tech mining or technology mining includes the application of text mining to 

technology management purposes (Madani 2015; Porter and Cunningham 2005). 

However, to understand the underlying patterns of technological change and the emergence of new 

technologies, we cannot evaluate technologies individually. When analyzing digital technologies, a 

dynamic system or an ecosystem model that represents interrelated technologies is beneficial owing to the 

systemic nature of digital technologies (Adomavicius et al. 2008). In this context, an IT ecosystem is “a 

subset of information technologies in the IT landscape that are related to one another in a specific context 

of use.” (Adomavicius et al. 2008, p. 783). In this ecosystem model, technologies are assemblies of 

component technologies that can also consist of subordinate component technologies or assemblies 

(Adomavicius et al. 2008; Arthur 2007). Innovation research prominently considers the recombination of 

existing technology components or modules as a relevant source of invention or innovation (Fleming and 

Sorenson 2001; Schoenmakers and Duysters 2010), which emphasizes the importance to incorporate a 

technology-overlapping perspective. On the one hand, components-based relationships may directly arise 

as a set of technological components intersect (Aharonson and Schilling 2016). On the other hand, the 

concept of knowledge-relatedness indicates other ways in which components-based relationships between 

technologies may arise: knowledge proximity, knowledge commonalities, and knowledge 

complementarities. While knowledge proximity refers to the results of learning processes (i.e. learning 

spillovers or local learning), knowledge commonalities may occur as two technologies overlap in their 

required knowledge. Considering knowledge complementarities, relationships may occur between 
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technologies that are dissimilar but technically build on one another (Breschi et al. 2003). Thus, one 

research strategy to retrace elapsed patterns of technological change and to deduce (future) directions of 

technological development is to consider the technological distances that characterize the proximities and 

dependencies of technologies or technology fields (Aharonson and Schilling 2016; Schoen et al. 2012). 

Further, Breschi et al. (2003) describe that the relatedness between technologies influence technological 

diversification decisions. Building on the ecosystem model, we hypothesize that the proximity of 

technologies indicates the imminent combination of component technologies into a new innovation.  

In this context, there are different methods in the academic literature that arrange technology-related entities 

in structured representations such as graphs, networks, or maps via text mining techniques (Engelsman and 

Van Raan 1994; Yoon and Park 2004). Other related research streams without a specific technology focus 

include knowledge maps (e.g., Hao et al. 2014), science maps (e.g., Klavans and Boyack 2009; Leydesdorff 

and Rafols 2009), and ontologies (e.g., Navigli et al. 2003; Pesquita et al. 2009). However, the academic 

literature lacks a text mining method that processes unstructured text to accomplish the following method 

engineering goals: First, enabling purposeful investigations, we need a text mining method that 

systematically arranges predeterminable technologies or abstractions of these. Depending on the research 

task at hand, it may be necessary or useful to conceptually aggregate associated technologies to an abstract 

technologies set (Arthur 2009). For instance, we can speak concretely about Apache Spark or switch to a 

more granular level and consider large-scale data processing systems as the abstraction level (Zaharia et 

al. 2016). Second, as change occurs over time, we require a dynamic perspective on changing technological 

distances that allows for in-depth longitudinal analysis. Third, as different technology-related information 

sources offer different insights, the method needs to be able to incorporate information from different 

sources. Thus, our research question is:  

How can an analytical method using text mining techniques be developed that arranges predefined 

technologies into a dynamically interpretable inter-technology relationship network? 
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To answer this question, we develop an analytic method following the design science research (DSR) 

paradigm in IS research (Gregor and Hevner 2013; Hevner et al. 2004; March and Smith 1995). An 

assembly-based process model for situational method engineering complements the DSR framework in the 

construction phase of our method (Brinkkemper 1996; Ralyté et al. 2003). We use established text mining 

techniques and draw from technology innovation research as justificatory knowledge. We contribute to the 

literature by providing an initial method assembly that supports technology and innovation management as 

well as research by systematically arranging technologies in an inter-technology relationship network. We 

also offer a comparison of two method variants and contrast the results to the assessment of human 

judgment as well as an alternative count-based approach to verify the results’ plausibility and to show the 

necessity of the method. For this, we used exemplary digital technologies from the big data analytics domain 

as an application scenario. 

The remainder of this paper is structured as follows: In Section 2, we discuss existing approaches to 

contextualize our method in the existing literature and to provide design knowledge relevant to our study. 

In Section 3, we describe our research approach. In Section 4, we introduce our proposed method, which 

processes textual data from different information sources into an analyzable and readable inter-technology 

relationship network. In Section 5, we review our evaluation activities. We conclude by summarizing our 

findings and discussing its limitations and future research. 

2. Literature Review 

Existing approaches that map technology-related entities concentrate on patents and scientific publications 

by using structured data such as bibliometric features, unstructured data in the form of text, or a combination 

(Aharonson and Schilling 2016; Yan and Luo 2017). Further, we recognize a research stream that is 

especially popular in the biomedicine and expert systems domain that uses existing ontologies to calculate 

semantic similarity measures (Lord et al. 2003; Pesquita et al. 2009; Sánchez et al. 2012). However, to 

avoid restricting our method’s applicability only to domains for which ontologies exist, we don’t follow 
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this approach any further. We will now first introduce bibliometric analysis approaches, to subsequently 

describe the more recent trends towards text-based measures in Section 2.2. 

2.1 Bibliometric Analysis 

Many early mapping attempts used bibliometric analysis. This limits the evaluation of documents to counts 

of scientific publications, patent documents, or associated citations to reproduce scientific and technological 

advances (Narin et al. 1994; Porter and Detampel 1995). In bibliometric analysis, citation-based measures 

gained much attention, including co-citation analysis, which relies on the number of concurrent citations of 

two documents in other documents, allowing one to retrieve the extent of a relationship (Small 1973; Small 

and Griffith 1974). In doing so, networks consisting of scientific articles allow one to follow the 

development of research fields, since influential articles have high connectivity (Furukawa et al. 2015). 

Alternatively, citation data can be processed in the form of citing-to-cited relationships between documents 

(Leydesdorff and Vaughan 2006). Leydesdorff et al. (2014), for instance, arranged patent classes by 

applying the cosine similarity index on vectors of a citing-to-cited matrix. Kay et al. (2014) used a similar 

approach on adjusted patent classes. Boyack et al. (2005) compared the results based on co-citation and 

citing-to-cited relationships. Lastly, bibliographic coupling describes the similarity of two documents by 

quantifying their shared references (Egghe and Rousseau 2002). Citation-based measures also have major 

drawbacks: varying citation rates in academic domains diminish inter-disciplinary comparability (Klavans 

and Boyack 2009). Owing to time lags in the patenting or publishing process, citation-based measures 

cannot cope with very recent technologies (Yoon and Kim 2011). Further, the necessity of data with 

citations limits its applicability. Further, citations don’t cover the entire relationship structure (Engelsman 

and Van Raan 1994). In particular, legal and economic rather than knowledge-mapping concerns are 

prevalent in patent citations (Leydesdorff 2008). For this reason, patent classification-based measures were 

developed to offer an alternative approach. Patent classification-based measures use information arising 

from the assignment of patent classes, which are originally used to support information retrieval 

(Engelsman and Van Raan 1994; Joo and Kim 2010). The issuing patent office refers to a fixed 
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classification scheme such as the International Patent Classification (IPC) system (Breschi et al. 2003; 

Leydesdorff 2008). The basic idea behind co-classification is that the more often two patent classes co-

occur in patent documents, the smaller the technological distance between them (Breschi et al. 2003; 

Engelsman and Van Raan 1994; Joo and Kim 2010). However, bibliometric analysis disregards potential 

insights hidden in the textual data (Engelsman and Van Raan 1994; Lee et al. 2009b), which motivates text-

based approaches to measure technological distance (Furukawa et al. 2015; Lee et al. 2009a; Yan and Luo 

2017). Swanson (1987) exemplarily showed that bibliographic analysis may not unveil unknown yet 

logically existing relationships between medical literatures. 

2.2 Beyond Bibliometric Analysis  

Some of the earlier text-based approaches rely on comparing the occurrence of keywords, following the 

idea of a vector space model (Yoon et al. 2013). For instance, Ding et al. (2001) applied co-word analysis 

using scientific publications’ keywords to create a bibliometric cartography of the field of information 

retrieval. The co-word approach assumes that the co-occurrence of keywords represents content-related 

associations (Callon et al. 1991; Lee et al. 2008). However, the exclusive use of the keywords provided by 

the authors or editors of a technology-related document has the disadvantage of disregarding a large part of 

the textual content. Yoon and Park (2004) and Lee et al. (2009a), for instance, used keyword vectors 

(composed in advance by extracted keywords) that quantify the occurrence of a keyword in a patent 

document. The relationships between patents is then calculated by the Euclidian distance index between 

these keyword vectors. In contrast, Lee et al. (2009b) used keyword vectors to apply a principal component 

analysis. Predefining or extracting meaningful keywords, particularly in the case of emerging technologies, 

requires much effort and expert knowledge (Yoon et al. 2011). Further, predefining or extracting 

meaningful keywords directly influences the results and thus decreases a study’s objectivity.  

To avoid the necessity to predefine keywords, Yoon et al. (2011) used the co-occurrences of properties (i.e. 

adjectives in patent documents) and functions (i.e. verbs in patent documents) to create a patent network. 

The parts of speech are also relevant to approaches using the subject-action-object (SAO) patterns to 
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retrieve content-related similarities between patents. Yoon and Kim (2012), for instance, approached 

technological distance between patents by calculating sentence similarity between SAO patterns extracted 

from patent documents. Within SAO patterns, subjects and objects consist of noun phrases, while action 

refers to verb phrases (Yoon et al. 2013). Thus, sentence similarity is calculated using the WordNet semantic 

dictionary (Miller 1995). This leads to the drawback that the method only calculates similarity based on 

words covered by the dictionary or a manual extension. By considering the patent application dates, Yoon 

et al. (2013) extended the SAO approach to create a dynamic patent map. Without concentrating on parts 

of speech, Nakamura et al. (2015) calculated the similarity between patent clusters by applying the cosine 

similarity index to weighted word vector representations of patent titles and abstracts. 

In contrast, we followed the recent development toward text-based measures, because we see untapped 

potentials. The research gap consists in the fact that a text-based approach that follows a dynamic, 

multisource perspective to measure technological distances between predefinable technologies remains 

unresolved. We apply a broad understanding of technology, as per Arthur (2007), defining it as any means 

that serves a human purpose (e.g., method, process, or device). This allows us to avoid limiting our 

method’s applicability to a specific technological context. Some approaches already compile technologies 

or technology fields (i.e. abstractions of technologies) using bibliometric features (e.g., Nakamura et al. 

2015; Schoen et al. 2012). 

3. Research Method 

To develop our analytic method, we followed the DSR paradigm. DSR, practiced in technical disciplines 

such as computer science and software engineering for decades, is also an accepted research approach in 

the information systems field (Hevner 2007; Iivari 2007; March and Storey 2008). DSR seeks to create 

artifacts that serve human or organizational purposes instead of understanding reality in the case of natural 

science (Hevner et al. 2004; March and Smith 1995). Thus, DSR provides a research process that enables 

rigorously building and evaluating viable artifacts and addresses important and relevant business problems 
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(Hevner et al. 2004). The DSR methodological approach commonly includes identifying the problem, 

defining a solution’s objectives, designing and developing an artifact, demonstrating how the artifact solves 

the problem, evaluating the artifact, and communicating the research (Peffers et al. 2007).  

Next to constructs, models, and instantiations, artifact types include methods (Hevner et al. 2004; March 

and Smith 1995); thus, DSR is an appropriate methodological framework for our study. Generally, methods 

specify how to perform goal-directed activities (March and Smith 1995). We will now introduce the applied 

approach to construct our method and will outline our evaluation strategy in Section 3.2. 

3.1 Assembly-based Method Construction  

While using DSR as a methodological frame for our overall design process, we complement principles of 

situational method engineering (Henderson-Sellers and Ralyté 2010) for rigorously constructing our 

method. Method engineering uses existing methods to “design, construct and adapt methods, techniques 

and tools for the development of information systems.” (Brinkkemper 1996, p. 276). In this discipline, 

situational method engineering seeks to create methods that fit specific IS development situations 

(Henderson-Sellers and Ralyté 2010). Thus, a diverse set of procedure models for situational method 

engineering exist in the academic literature (Bucher and Winter 2008). We build on the assembly-based 

method engineering approach by Ralyté et al. (2003) and apply it, as illustrated in Figure 1. 

Set method 

engineering 

goal

Specify method 

requirements

Select method 

chunks

Assemble 

method chunks

Complete 
method?

Yes

No

Requirements 
satisfied?

Yes

No

 

Figure 1. Assembly-based method engineering approach 

 

Step 1 (i.e. setting a method engineering goal) incorporates the definition of what the method should achieve 

and the decision whether to start from scratch or to take an existing method to build on (Ralyté et al. 2003). 

We have already delineated our method engineering goals in the introduction section. We constructed our 

method from scratch, but adhered to existing approaches introduced in the literature review section. Step 2 
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(i.e. specifying method requirements) involves the identification of requirements that candidate chunks 

must fulfill (Ralyté et al. 2003). We address these requirements in the artifact description section. Steps 3 

and 4 (i.e. selecting and assembling method chunks) iterate until the method engineer accomplishes a 

complete solution) (Ralyté et al. 2003). Strategies that support the selection of method chunks include 

decomposing, aggregating, and refining existing methods. Selected method chunks that satisfy the 

requirements need to be assembled until the composed method meets the completion conditions (CCs) 

(Ralyté et al. 2003). We set our CCs as follows: 

(CC1) Artifact assembly fulfills targeted method engineering goals  

(i.e. the intended input-output transformation). 

(CC2) Each method chunk fulfills requirements. 

(CC3) The data processing – including all steps – is transparent and verifiable. 

(CC4) The method processes large-scale corpora within a reasonable time.  

Although the introduced methodological approach originated from the construction of IS development 

methods, it is also suitable for constructing our analytic method: First, it allowed us to rigorously combine 

existing text mining techniques (i.e. method chunks) to develop a novel analytical method that satisfies 

previously specified requirements and CCs. This construction process iterates in the form of a search 

process, as proposed in DSR (Hevner et al. 2004; Hevner 2007). We conducted this design process in 

several iterations of feedback and testing. Second, we could use justificatory knowledge in the design 

process as recommended by Gregor and Hevner (2013). Thus, we relied on academic literature from the 

innovation, technology, and text mining research. This procedure allowed for the conceptualization of the 

natures of technologies and their relationships as well as to extract method chunks from existing 

(technology-related) text mining approaches. Notably, this paper is about the development of an overall 

assembly, rather than about configuring specific method chunks in detail. 
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3.2 Evaluation Strategy  

Besides creating an artifact, its thorough evaluation is crucial so as to demonstrate the artifact’s inherent 

utility (Hevner et al. 2004; March and Smith 1995). According to March and Smith (1995), the evaluation 

criteria for methods comprise ease-of-use, operationality (i.e. feasibility and effectiveness), efficiency, and 

generality. We implemented a prototype as an instantiation of our method (March and Smith 1995) to apply 

the method to an exemplary scenario and to discuss the method’s utility.  

To evaluate effectiveness, we compared the two method variants’ methods with each other as well as with 

human judgment. Comparing automatically calculated similarity measures to the scores of human judgment 

is a common approach in computational linguistics (e.g., Arts et al. 2017; Lapata 2006). To collect human 

judgment, we conducted semi-structured interviews according to Myers and Newman (2007), in which we 

proceeded as follows: First, we introduced ourselves and explained the interview’s purpose. Second, we 

introduced our understanding of technologies and the manifold possibilities of how relationships between 

technologies may occur. Third, each interviewee completed a symmetric adjacent matrix. Fourth, we 

processed the adjacent matrix into a network representation, allowing a participant to visually verify its 

ratings. In case of discrepancies, we returned to step 3. Finally, we discussed the challenges that occurred 

when completing the adjacent matrix and asked the interviewee how well they assessed their rating 

performance. Experiences from the pre-tests resulted in the iterative completion of the adjacent matrix. The 

interviewees showed strong appreciation of this proceeding, since it allowed them to more accurately assess 

the complex structures of technological relationships. As participants, we selected eight researchers from 

our research network and two practitioners associated with our research network. Every interviewee had 

distinct knowledge in the technology landscape in question. The interviews lasted approximately 60 to 90 

minutes each. We also discussed face validity against the following assumptions: If a document contains 

two technologies, there is a relationship between these technologies is. Accordingly, the more documents 

that satisfy the above condition, the more reliable (not necessarily stronger) the relationship between these 

technologies. Notably, we did not apply the reverse conclusion (i.e. if there is a relationship between 
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technologies, they also occur together in documents). An in-depth evaluation regarding generality and 

efficiency, falls outside the scope of this work. We discuss the fulfillment of the CCs so as to conclude the 

evaluation. 

4. Artifact Description 

Based on self-assembled corpora associated with predefined technologies, our method creates an inter-

technology relationship network using text similarity measures. In this regard, we assume that the textual 

similarity between technology-specific corpora indicates the relatedness between technologies. This 

assumption is in line with text-based approaches introduced in the literature review. To simplify matters, 

we further assumed that the relatedness between technologies is commutative (i.e. relatedness between 

technology A and B = relatedness between B and A). To avoid terminological confusion, we will equate 

technological relatedness and technological proximity and will disregard the opposing notion of 

technological distance. This is not detrimental to our study, since one can easily convert a similarity measure 

into a distance measure via inversion or subtraction (Turney and Pantel 2010). 

By inter-technology relationship network, we mean an ordered sequence of undirected, weighted 

multigraphs with the edges’ weight representing the technological relatedness. Thus, we combined the 

principles of traditional graph theory (Bollobás 1998; Newman 2003) and time-varying networks (also 

referred to as evolving, temporal, or dynamic networks). Time-varying networks are exposed to topological 

changes as a function of time (Casteigts et al. 2011; Holme and Saramäki 2012). In particular, we applied 

the model analogous to Ferreira (2004), depicting the longitudinal development as a sequence of static 

multigraphs, each of which represents a time stamp. Here, the use of a multigraph allowed us to distinguish 

between multiple weighted edges resulting from different technology-related document types (Bollobás 

1998), and thus to incorporate for instance patent documents and scientific publications jointly into a single 

network. Describing the technological space with the help of networks allowed us to maintain as much of 
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the characteristics of the original high-dimensional technological space and to use an abundance of existing 

network analysis methods.  

To create an inter-technology relationship network, we proposed an individual processing pipeline for each 

data type. The network sequences resulting from the different data sources were then merged into a 

sequence of multigraphs. We separated the processing, since each technology-related document type has a 

textual style. Figure 2 illustrates the overall design of the method, and Figure 3 specifies the structure of 

the data type-specific processing pipelines, which we explain in some detail in Sections 4.1, 4.2, and 4.3. 
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Figure 2. Method overview 

 

The input of our method consists of a list of predefined technologies and technology-related documents. 

Each technology of interest must be specified in advance with a name and an allocation query (e.g., 

‘mapreduce’ OR ‘map reduce’ OR ‘map-reduce’ in the patent title OR abstract). To compile a list of 

technologies, one may refer among others to the results of previously conducted technology scouting 

activities, the academic literature, and existing taxonomies or ontologies. Ontologies for instance may 

provide precisely defined terms in a specific domain (Maedche and Staab 2002).  

Preprocessing then seeks to process technology-related documents such that they provide the necessary 

data basis for the subsequent processing steps. We refer to the processed documents as assets. To suit our 
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method, each asset must contain at least a time classification parameter and text. This requirement barely 

restricts usable data sources. Thus, our method is capable of integrating various data sources such as patents, 

scientific publications, news articles, or social media posts. We used the processed assets to create 

technology-specific corpora, each of which represents the development of a predefined technology. This 

requires techniques to adequately allocate and condense assets to form technology-specific and time-

varying corpora. Based on these corpora, we applied text similarity measures to derive time-varying 

relatedness matrices. This required text similarity measures that describe technological relatedness based 

on content-related rather than syntactic similarity of the technology-related corpora. Finally, we used the 

relatedness matrices as adjacency matrices to construct the networks. To avoid loops (i.e. relationships that 

connect an individual technology to itself), we manually set the diagonal elements to zero. The user may 

apply a cutoff value, to limit the networks to more pronounced relationships or to eliminate noise. 
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Figure 3. Data type-specific processing pipelines 

4.1 Preprocessing 

Preprocessing involves providing the right data structure and text normalizing to increase the effectiveness 

of the subsequently applied text similarity measures (Turney and Pantel 2010). While extracting a time 

classification parameter from an asset is hardly a problem for any asset type, preprocessing deals primarily 

with the preparation of the text. To meet the data structure requirements of most text mining algorithms, 

one must tokenize plain text into single words (Manning et al. 2009). Since the expression that specifies a 

technology may consist of several words, we recommend recombining single tokens to multiword 

expressions based on a predefined thesaurus of technology expressions. An example is ‘machine learning.’ 

We recombined the single tokens ‘machine’ and ‘learning’ into ‘machine_learning’ with an underscore. 
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Normalizing text by converting superficially different terms into the same form increases the effectiveness 

of the subsequently applied text similarity measures (Turney and Pantel 2010). Thus, terms of 

morphological variants match, which would otherwise not coincide (Hull 1996). We applied lemmatization 

to canonicalize tokens (Manning et al. 2009). For lemmatizing, we used the morphy function of the lexical 

database WordNet (Miller 1995). Further, we suggest removing stop words (e.g., of, the, that), which often 

occur but contribute little to the content (Manning et al. 2009; Turney and Pantel 2010), and using all 

lowercase letters. While the introduced preprocessing steps worked well with formal language appearing 

for instance in patent documents and scientific publications, adapted preprocessing methods are necessary 

for information sources such as news articles or social media. For this reason, we applied a processing 

pipeline for each data type individually. This example illustrates the preprocessing steps.  

Raw string:   ‘We applied Machine Learning algorithms in the cloud’ 

Case folding:  ‘we applied machine learning algorithms in the cloud’ 

Tokenizing:  ‘we’, ‘applied’, ‘machine_learning’, ‘algorithms’, ‘in’, ‘the’, ‘cloud’ 

Lemmatizing:  ‘we’, ‘apply’, ‘machine_learning’, ‘algorithm’, ‘in’, ‘the’, ‘cloud’ 

Filtering stop words: ‘apply’, ‘machine_learning’, ‘algorithm’, ‘cloud’ 

4.2 Corpus Construction   

By allocating assets to individual technologies, we obtained a selection of assets for each technology. There 

are multiple approaches to achieving this, since the problem shows parallels to information retrieval. For 

instance, Schoen et al. (2012) and Nakamura et al. (2015) used patent classes to identify technologies. For 

the sake of simplicity, we stuck with a simple exact term matching approach by assigning a document to a 

technology when a predefined, technology-specific query was true for an asset. Thus, we consider 

terminology as the surface appearance of technologies (Navigli et al. 2003). Table 1 describes an example 

of the asset allocation in the case of patent documents. Avoiding false positive allocations, we applied 

allocation queries for patent documents only to patent titles and abstracts. 
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Technology 

name 
Patent allocation query Asset 1 Asset 2 Asset 3 … 

MapReduce 
‘mapreduce’ OR ‘map reduce’ OR ‘map-reduce’ in 

the patent title OR abstract 
True False False  

Sentiment 

Analysis 

‘sentiment analysis’ OR ‘sentiment-analysis’ OR 

‘opinion mining’ OR ‘opinion-mining’ in the 

patent title OR abstract 

False False False … 

… … … … … … 

Table 1. Example of asset allocation for patent documents 

We used the assigned assets to create technology-specific and time-varying corpora. To accomplish this, 

we suggest to accumulate the assets’ terms into a sequence of terms for every technology on an annual basis 

in the case of patents and scientific publications. Thus, a technology-specific corpus 𝐴𝑡 at time 𝑡 equals the 

sequence of terms from 𝐴𝑡−1 appended by the terms of the assets at time 𝑡. This proceeding is based on the 

assumption that both patents and scientific publications refer to all existing knowledge. Nonetheless, it is 

necessary to verify whether this assumption is also valid for other data types (e.g., Twitter). 

4.3 Measuring Relatedness 

The academic literature offers a wide range of approaches to determining similarities between texts. The 

count-based bag-of-words approach (BOW) is one of the most common approaches to measuring the text-

based similarity between documents (Le and Mikolov 2014). The underlying hypothesis of the BOW 

approach is that the more two texts resemble each other in their word frequencies, the more similar they are 

(Li et al. 2006; Salton et al. 1975; Turney and Pantel 2010). Following the distributional hypothesis (Harris 

1954), the Vector Space Model describes a document as a vector of terms (Salton and Buckley 1988). Given 

the technologies 𝑡𝑒𝑐ℎ1, … , 𝑡𝑒𝑐ℎ𝑛 and the terms contained in the entire corpus 𝑤1, … , 𝑤𝑚, we defined a 

term-technology matrix as 𝐴𝑡 ∈  ℝ𝑚×𝑛 where 𝑎𝑖𝑗 represents the occurrence of the term 𝑤𝑖 in the corpus of 

technology 𝑡𝑒𝑐ℎ𝑗 at time 𝑡. Based on the term-technology matrix, the distance or angle between the column 

vectors allows one to quantify the similarities between the technology-related corpora (Salton et al. 1975; 

Salton and Buckley 1988). In this context, the academic literature commonly refers to cosine similarity 

(Lowe 2001; Turney and Pantel 2010). This yields to a symmetric technology-to-technology relatedness 

matrix 𝑅𝑡 = (𝑟𝑒𝑙𝑛,𝑚) at time 𝑡. 
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With the objective to improve the basic BOW approach’s performance, advanced techniques commonly 

transform the count-based word vectors. This includes primarily reweighting document vectors and 

smoothing them (Baroni et al. 2014). Reweighting seeks to improve document vectors’ distinctness by 

increasing the influence of surprising events as opposed to expected events (Turney and Pantel 2010). We 

selected the commonly used term frequency inverse document frequency (tf-idf) weighting (Manning et al. 

2009; Salton et al. 1983), referring to it as BOW-tf-idf. Thus, a term in a document has a higher weight if 

it appears more often in this document and the less often other documents contain the term. This yields to 

a weighted term-technology matrix 𝐴𝑡. Visualizing large corpora, existing approaches use matrix 

decomposition and factorization methods such as singular value decomposition (SVD) and principal 

component analysis (Gretarsson et al. 2012). SVD, as a part of latent semantic analysis (Landauer and 

Dumais 1997) or latent semantic indexing (Dumais et al. 1988), reduces the dimensionality of a (weighted) 

term-document matrix (Landauer et al. 1998) or, in our case, the term-technology matrix. Dimensionality 

reduction tries to address the effect of synonymy (i.e. different terms describing the same object) and 

polysemy (i.e. the same term describing different objects) (Deerwester et al. 1990). As in the basic BOW 

approach, the cosine is applied to the documents’ vector representations (Bradford 2008). Thus, the 

definition of the dimensionality reduction parameter is complex, which directly influences the results 

(Bradford 2008). 

As a disadvantage, the BOW approach ignores word order, so that two documents may have the same word 

vectors, although they express different content (Le and Mikolov 2014). However, for large corpora, the 

abundance of co-occurring words weakens the effects of neglecting syntactic information (Li et al. 2006). 

Recently, prediction-based measures, such as the Word2Vec model (Mikolov et al. 2013), became the 

subject of discussion (Baroni et al. 2014; Zhu and Iglesias 2017). The Word2Vec model creates distributed 

word vectors by learning to predict words from its context (i.e. surrounding words) (Mikolov et al. 2013). 

While the Word2Vec model enables vector representations of words, it does not natively support vector 

representation of multiple words or whole documents. Thus, Le and Mikolov (2014) proposed an 
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unsupervised framework (often referred to as Doc2Vec) that produces document vectors or, in general, 

paragraph vectors in which text length can range from sentences to whole documents (Le and Mikolov 

2014). Doc2Vec provides two approaches to learn document vectors, namely the distributed memory model 

(used in this study) and the distributed BOW version (Le and Mikolov 2014). The distributed memory 

model trains both word vectors (analogous to Word2Vec) and document vectors (Le and Mikolov 2014). 

We then applied the cosine to the document vectors to retrieve their similarity. We will now compare the 

results of BOW-tf-idf and Doc2Vec.  

5. Evaluation  

For our illustrative scenario, we consider the case of big data analytics, which significantly affects 

academics and business (Agarwal and Dhar 2014). Being relevant to various domains, big data challenges 

all actors to cope with new technologies for storing, processing, and analyzing a massive amount of data 

(Buhl et al. 2013; Hu et al. 2014) and therefore changes the corporate landscape (Chen et al. 2016). Big 

data’s ambitions involve the volume, variety, velocity, and veracity of data, as well as the value from data 

(Chen et al. 2015). According to Hu et al.’s (2014) layered architecture model, the big data system affects 

the infrastructure layer (i.e. the pool of computing, networking, and storage resources, including cloud 

infrastructure), the computing layer (i.e. middleware, including data tools such as data integration, data 

management, and a programming model), and the application layer (i.e. the interfaces provided by the 

programming models for various data analysis functions). The data used for big data analytics ranges from 

structured, to semi-structured, unstructured, and real-time data (Kambatla et al. 2014). We selected this 

technology landscape as our illustrative scenario, for the following reasons: First, since data analytics has 

been discussed for several years, a profound data basis exists. Second, new questions and opportunities 

concerning the availability of data and machine intelligence are changing the technology landscape 

(Agarwal and Dhar 2014). To apply our proposed method to this scenario, we extracted a set of 32 

technologies by relying on the academic literature. We consider this technology set as a sample excerpt and 

do not claim that it is exhaustive.  
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To prevent the interviews from exceeding a reasonable extent and from becoming too complex, we limited 

the number of technologies. Thus, we randomly selected 11 technologies from the technology set and added 

Bluetooth to control against false positive results, since technologies in the big data analytics ecosystem are 

somewhat interrelated. We contained ratings from interviewees using a rating scale ranging from 0 (i.e. 

technologies bear no relation to one another) to 100 (i.e. technologies are identical or always co-occur 

together). 

We acquired patent grant full-text data issued weekly from January 2007 to December 2017 from the bulk 

data storage system of the United States Patent and Trademark Office (2018) on February 11, 2018. While 

parsing the provided XML files, we filtered the patents so that only technical patents (i.e. utility patents) 

that fulfilled classification requirements remained. Our patent data comprises patents classified by the 

International Patent Classification (IPC) as G (i.e. Physics) and H (i.e. Electricity) or by the Cooperative 

Patent Classification (CPC) as G (i.e. Physics), H (i.e. Electricity), and Y (i.e., among others, new 

technological developments and cross-sectional technologies). We initially filtered patent data moderately 

on the basis of their classification in order to reduce the influences of term ambiguities, but also to avoid 

excluding relevant patents. As part of the subsequent asset allocation, technology-specific queries then 

filtered irrelevant patent documents more strictly. We used the application year as the time classification 

parameter. Regarding patenting activities, it seemed sufficient to rely only on U.S. patent data, since they 

are a reliable representation of patenting activities (Leydesdorff et al. 2014) and we are not addressing legal 

issues. However, one may also incorporate patent data from other patent offices, such as the European 

Patent Office or the Japan Patent Office. We retrieved titles, abstracts, and publication years of scientific 

publications for 2007 to 2017 from Web of Science (Clarivate Analytics 2018) on April 15, 2018. We 

applied the following search specification: 
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“(TS=("Cloud Computing" OR "Cloud Service" OR "Cloud-based" OR "Infrastructure as a service" OR "Software as a Service" 

OR " Platform as a Service") OR TS=(Big AND Data*) OR TS=("Data Science" OR "Data Analytics" OR "Data Analysis" OR 

"Data Mining" OR "Text Mining") OR TS=("Machine Learning" OR "Neural Network") OR TS=("Bluetooth") OR TS=("Speech 

recognition") OR TS=("Stream Processing" OR "Stream Processor") OR TS=("Image Analysis") OR TS=("In-memory 

Computing" OR "In-memory database") OR TS=("NOSQL") OR TS=("Internet of things")) AND LANGUAGE: (English) AND 

DOCUMENT TYPES: (Article) Refined by: WEB OF SCIENCE CATEGORIES: (ENGINEERING ELECTRICAL 

ELECTRONIC OR COMPUTER SCIENCE ARTIFICIAL INTELLIGENCE OR COMPUTER SCIENCE INFORMATION 

SYSTEMS OR COMPUTER SCIENCE INTERDISCIPLINARY APPLICATIONS OR COMPUTER SCIENCE THEORY 

METHODS OR COMPUTER SCIENCE SOFTWARE ENGINEERING OR COMPUTER SCIENCE CYBERNETICS OR 

INFORMATION SCIENCE LIBRARY SCIENCE OR COMPUTER SCIENCE HARDWARE ARCHITECTURE) 

Timespan: 2007 to 2017. Indices: SCI-EXPANDED.” 

 

In sum, patent data acquisition yielded 14,859 patents that matched both patent classification requirements 

and our patent allocation queries. The abovementioned search specification resulted in 59,400 scientific 

publications. We will now evaluate our method by discussing its effectiveness (Section 5.1), feasibility, 

ease-of-use (Section 5.2), and fulfillment of the CCs (Section 5.3).  

5.1 The Method’s Effectiveness 

For each technology pair, we derived a set of relatedness scores, including the results of the BOW-tf-idf 

and the Doc2Vec approaches, as well as human judgment. Owing to the limited dimensionality reduction 

potential resulting from the relatively small number of nodes in our exemplary technology set, we did not 

use the SVD approach. To compare the scores, we used Kendall’s 𝜏 (Kendall 1938) to apply a non-

parametric rank correlation test with the null hypothesis of no differences between the scores. By using a 

rank correlation coefficient, we addressed the feedback of some interviewees that, despite the scale used, 

they were unable to provide parametric scores. Table 2 contains the results of the comparison, using 

Kendall’s 𝜏. Each cell in the correlation matrix represents the correlation between the results of the method 

variants in the case of patent data and scientific publications. Thus, the method’s results are based on the 

smaller technology subset so as to be comparable to human judgments. 
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BOW-tf-idf  1 0.329* 0.123 1 0.254* 0.173* 

Doc2Vec 0.329* 1 0.171* 0.254* 1 0.108 

Averaged human judgments 0.123 0.171* 1 0.173* 0.108 1 

Note: * two-sided p-value < 0.05. 

Table 2. Correlation between the results 

Table 2 indicates significant correlation between the method variants and the averaged human judgment 

only in certain instances. However, while the human judges agreed for some technology pairs (e.g., machine 

learning and neural network), there were significant differences for other technology pairs (e.g., speech 

recognition and image analysis). This disagreement between human judges manifested in an average 

standard deviation of 21.2 and a Kendall’s coefficient of concordance (Kendall and Smith 1939) of 0.58. 

This discrepancy occurred, although the interviewees at least considered their assessments to be good; 

however, they substantiated their relatedness scores with different rationales. Thus, we don’t regard the 

averaged human judgments as a conventional gold standard. Nonetheless, the results underline the 

importance of a transparent and verifiable method that complements human judgments. Besides this, Table 

2 depicts that the method variants have weak positive, significant correlations between one another. 

Although the method variants shared some agreement, it is apparent that they weigh the relationships 

differently. 

Directly comparing the results of patent data and scientific publications using the same method variants 

based on the smaller technology subset with the null hypothesis of no differences between the scores yielded 

a Kendall’s 𝜏 of 0.535 (two-sided p-value < 0.05) for BOW-tf-idf and -0.08 (two-sided p-value > 0.05) for 

Doc2Vec. This comparison highlights that, especially for Doc2Vec, the data source that is used influences 

the results and thus provides a different perspective on the technology landscape. To discuss face validity, 
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we followed a visual approach, providing three charts (Figure 4) that illustrate the number of documents in 

which a technology pair co-occurs ordered by the results of the individual method variants descends from 

left to right. To calculate the values of the method variants, we applied the prototype implementation to 

patent data. 

   

Figure 4. Face validity against co-occurrence of technologies in patents 

 

At first glance, it becomes apparent that both algorithms tend to value technology pairs, which often co-

occur in documents, with a high value. The accumulation of high bars on the left demonstrates this 

phenomenon. However, Figure 4 also illustrates that the algorithms come to different rankings and even 

give high weights to edges of technologies with a small number of co-occurrences. In this context, a low or 

non-existent number of co-occurrences does not mean that there is barely or even no relationship between 

the technologies. For instance, key-value databases and column-oriented databases are apparently related, 

but didn’t appear together in the abovementioned patent collection. Although these technologies were not 

mentioned together in a single document, the method variants measured at least a moderate relatedness. To 

get a better impression of the resulting networks, we provide an exemplary network slice (Figure 5), using 

the BOW-tf-idf approach based on patent data as at 2017. The average edge degree determines the size of 

the nodes, and the edge thickness displays the relatedness between two technologies resulting from 

measuring the text similarity of the technology-specific corpora. By using cosine similarity, the edge 

weights have values between 0 and 1; thus, no further normalization is necessary. To ensure clarity, we 

filtered the edges based on their weights, so that they had to exceed a minimum value. 
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Figure 5. Exemplary network slice based on patent data as at 2017 

 

Based on the network representation, it turns out that a basic structure is given through the highly weighted 

edges. For instance, the network representation exposes a group of technologies directly associated with 

cloud computing. Besides the thick edges, there are many thin edges. Notably, Bluetooth, which we initially 

intended for a false positive test, has among others relationships to cloud computing, social media, and 

speech recognition. The number of documents in which these technology pairs co-occur justified these 

relationships, since 749 patents mentioned both cloud computing and Bluetooth, 260 social media and 

Bluetooth, and 470 speech recognition and Bluetooth. For instance, the input device for speech recognition 

may be a Bluetooth-enabled device. The technologies Bluetooth and social media, as another example, are 

linked via patents in the context of smartphones. 

Figure 6 illustrates the dynamic perspective of the inter-technology relationship network based on patent 

data from 2007 to 2017 by plotting the normalized average edge weights. The line graph shows that the 

average edge weight in our network increased over time, indicating the tighter integration of technologies 
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over the years. It is also striking that our method variants Doc2Vec and BOW-tf-idf both recognized the 

high interlocking of technologies even before the co-occurrence of technologies in patents increased. 

 

Figure 6. Exemplary network dynamics based on patent data 

5.2 Feasibility and Ease-of-use 

To discuss our method’s feasibility, we implemented a prototype in Python as an instantiation of the 

proposed method (March and Smith 1995). This prototype also generated the paper’s included figures. The 

possibility of swiftly assembling existing text mining techniques with the help of available, open-source 

libraries in environments such as Python fosters the proposed method’s ease-of-use. We refer to NLTK 

(Bird et al. 2009) for natural language processing, Scikit-learn (Pedregosa et al. 2011) for BOW models, 

genism (Rehurek and Sojka 2010) for the Doc2Vec model, NetworkX (Hagberg et al. 2008) for the creation 

of our networks, and Gephi (Bastian et al. 2009) for visualization purposes. The availability of required 

data directly influences the method’s applicability. While the United States Patent and Trademark Office 

provides patent full-texts in a processable way and free of charge, licensing issues concerning scientific 

full-texts complicate the method’s application. Concerning required computing resources, experiences from 

the use of the prototype demonstrate that even a low-end workstation (6 CPU cores, 16GB of main memory) 

can run the processing pipelines of small networks within a reasonable amount of time. More extensive 

networks (i.e. more nodes or more data) raise the demands on computer resources. Besides developing 
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software to execute the proposed method, its application demands both expertise in text mining as well as 

in the technological domain under assessment. While using the simple BOW approach or its weighted 

extension (i.e. tf-idf) do not require any definition of parameters, the other variants require an understanding 

of parameter selection. The user of the proposed method requires in-depth knowledge of the technology 

landscape and the terminologies for defining a technologies set and appropriately configuring the asset 

allocator. The outlined imperative of method-based and domain-based knowledge restrict the user set. 

5.3 Implications for the Completion Conditions 

The application of the proposed method reveals several insights: First, it validates that the proposed method 

is suitable for measuring the relatedness between technologies in a real-world scenario. In this regard, the 

method supplies both obvious and unexpected relationships. Since each method variant highlights 

relationships differently, it remains open to derive the properties of the results of each method variant. 

Second, from the comparison of the results based on patents and scientific publications, we conclude that 

the inclusion of different asset types is worthwhile, in order to extend the explanatory power of an inter-

technology relationship network. Third, the evaluation demonstrates the difficulty of getting a benchmark 

set against which method variants can be evaluated or trained. For one thing, the method variants’ results 

only scarcely matched human judgments, although the interviewees approached their relatedness scores 

from different perspectives, resulting in limited agreement between the judges. For another thing, the 

method variants’ results performed well against face validity. 

Against the imposed completion conditions, we draw the following conclusion: The method meets the 

completion conditions CC1 (i.e. intended input-output transformation), CC3 (i.e. transparency and 

verifiability of the data processing steps), and CC4 (i.e. processing within a reasonable amount of time). 

We don’t consider CC2 (i.e. each method chunk fulfills its requirements) to be fully assessable, owing to 

contradictions in the evaluation. This partial fulfillment motivates further research to compare the 

influences of different method chunks on the results. Notably, the overall assembly of the method works as 

a complement to decision-making rather than as a single point of truth. 
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6. Discussion and Conclusion 

Ongoing advances in digital technologies – which are enabling new products, services, and business models 

– have fundamentally affected business and society through several waves of digitalization. Companies 

must decide which of the many emerging technologies are worth adopting or developing. Using an 

assembly-based process model for situational method engineering, and following the design science 

research paradigm, we have developed an analytical method to generate technology-related network data 

that retraces elapsed patterns of technological change. Thus, we consider the technological distances that 

characterize technologies’ proximities and dependencies. We used established text mining techniques and 

drew from technology innovation research as justificatory knowledge. The method processes textual data 

from different information sources into an analyzable and readable inter-technology relationship network 

that is intended to be the input for further analyses. For instance, it may be the basis for the construction of 

domain-specific ontologies.  

Although we have followed a rigorous research approach, this study has limitations. While we compared 

different method variants concerning text similarity measures, we only considered a selection of existing 

approaches and did not develop new algorithms or tailor existing ones. Further, we did not evaluate the 

influences of different preprocessing techniques, such as stemming instead of lemmatizing. We also 

simplified the problem by only allowing documents in English. Besides this, asset allocation follows a fairly 

simple approach so as to avoid false positive annotations, neglecting the potential information hidden in 

unallocated documents. While the proposed method quantifies relationships between technologies based on 

different data sources, it remains open to clarifying their contextual differences. There is always a limitation 

in the informative value of the data used, considering the use of data sources. In the case of patent data, 

different factors may result in biases and inconsistences across technology fields (Choi and Park 2009). 

These factors include for instance the strategic decision to keep an invention secret instead of patenting it 

(Kultti et al. 2007). Besides this, we derived historical developments without considering asset type-specific 

time lags (e.g., time lags induced by academic journals’ peer-review processes). In addition to the 
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limitations in the method construction, the method’s evaluation provided partial evidence and demands 

supplementary evaluation efforts. Evaluation efforts may include increasing the number of interviewees as 

well as having the method’s results evaluated by the interviewees. It is also worth verifying whether the 

average of the interviewees’ scores is an effective means. Further research may also evaluate the method’s 

utility in real-world scenarios or usage cases and may include a comparison with other state-of-the-art 

approaches. 

Further, we advocate research into appropriate methods to analyze our inter-technology relationship 

network. This endeavor is in line with related research (e.g., Choi et al. 2011; Yoon et al. 2011; Yoon and 

Kim 2011). In this context, the following research directions motivate us to use inter-technology 

relationship networks as an intermediate result for further analyses:  

I. Regarding specific technologies, it is desirable to understand how an individual technology 

develops within a (specially) assembled network or in a static consideration of what relative 

importance it has (for a company) at a certain point in time. Besides gaining an overview of a 

technology landscape, our method allows practitioners to evaluate technologies individually in the 

technology context of their company, avoiding non-targeted assessments. For instance, it may 

support technology roadmapping and may provide insights into the technological development 

paths (Yan and Luo 2017). 

II. Besides considering single technologies, companies may use a technologies set to evaluate the 

similarities between technology portfolios within and across companies. Thus, we are confident 

that methods based on inter-technology relationship networks support competitor analysis and 

decision-making in the context of mergers and acquisitions. 

III. Nonetheless, our method and its results are not closed to theory-building. Among others, this could 

cover an inductive reasoning process that compares the evolution of previous innovations or, in 

more general technologies, in their lifecycles. Related to the network topology, we see potential in 

examining and comparing network structures both statically and dynamically.  
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In sum, we have contributed to the literature by introducing a complementary method for technology and 

innovation management as well as technology innovation research. The method allows one to create a 

network picture of an arbitrary technology landscape that is worth a million words. Thus, we have closed 

the addressed research gap by following a dynamic, multisource strategy to retrace technological distances 

between predefined technologies. The method’s results open new possibilities for research and practice, 

advancing the discourse on the development of technology landscapes and occurring phenomena as well as 

the development of decision support systems such as technology forecasting tools. However, this network 

picture is not an end in itself, but an intermediate step in supporting data-driven decision-making. We 

strongly encourage future researchers to build on our method and to use its results as input for their analyses 

and methods.  
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